Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy.
نویسندگان
چکیده
The neuregulin-1 (NRG1)/ErbB system has emerged as a paracrine endothelium-controlled system in the heart, which preserves left ventricular (LV) performance in pathophysiological conditions. Here, we analyze the activity and function of this system in pregnancy, which imparts a physiological condition of LV hemodynamic overload. NRG1 expression and ErbB receptor activation were studied by Western blot analyses in rats and mice at different stages of pregnancy. LV performance was evaluated by transthoracic echocardiography, and myocardial performance was assessed from twitches of isolated papillary muscles. NRG1/ErbB signaling was inhibited by oral treatment of animals with the dual ErbB1/ErbB2 tyrosine kinase inhibitor lapatinib. Analyses of LV tissue revealed that protein expression of different NRG1 isoforms and levels of phosphorylated ErbB2 and ErbB4 significantly increased after 1-2 wk of pregnancy. Lapatinib prevented phosphorylation of ErbB2 and ERK1/2, but not of ErbB4 and protein kinase B (Akt), revealing that lapatinib only partially inhibited NRG1/ErbB signaling in the LV. Lapatinib did not prevent pregnancy-induced changes in LV mass and did not cause apoptotic cell death or fibrosis in the LV. Nevertheless, lapatinib led to premature maternal death of ∼25% during pregnancy and it accentuated pregnancy-induced LV dilatation, significantly reduced LV fractional shortening, and induced abnormalities of twitch relaxation (but not twitch amplitude) of isolated papillary muscles. This is the first study showing that the NRG1/ErbB system is activated, and plays a modulatory role, during physiological hemodynamic overload associated with pregnancy. Inhibiting this system during physiological overload may cause LV dysfunction in the absence of myocardial cell death.
منابع مشابه
Lessons From Unexpected Triggers of Heart Failure in Targeted ErbB2 Anticancer Therapy
In this review, we address clinical aspects and mechanisms of ventricular dysfunction induced by anticancer drugs targeted to the ErbB2 receptor. ErbB2 antagonists prolong survival in cancer, but also interfere with homeostatic processes in the heart. ErbB2 is a coreceptor for ErbB4, which is activated by neuregulin-1. This epidermal growth factor–like growth factor is released from endothelial...
متن کاملThe vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy.
In this review, we address clinical aspects and mechanisms of ventricular dysfunction induced by anticancer drugs targeted to the ErbB2 receptor. ErbB2 antagonists prolong survival in cancer, but also interfere with homeostatic processes in the heart. ErbB2 is a coreceptor for ErbB4, which is activated by neuregulin-1. This epidermal growth factor-like growth factor is released from endothelial...
متن کاملSpecific structural features of heparan sulfate proteoglycans potentiate neuregulin-1 signaling.
Neuregulins are a family of growth and differentiation factors that act through activation of cell-surface erbB receptor tyrosine kinases and have essential functions both during development and on the growth of cancer cells. One alternatively spliced neuregulin-1 form has a distinct heparin-binding immunoglobulin-like domain that enables it to adhere to heparan sulfate proteoglycans at key loc...
متن کاملNew manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 300 3 شماره
صفحات -
تاریخ انتشار 2011